Les applications du Deep Learning

Antoine Nuttinck
Par 
Antoine Nuttinck
Co-founder
Dernière mise à jour le 
09
 
September
 
2024
Reconvertissez-vous dans la Data et donnez un tournant à votre carrière !
Découvrir nos formations
Les applications du Deep Learning
Sommaire

C’est une branche du Machine Learning très prometteuse. Que ce soit pour reconnaître des visages sur des images, analyser des textes et les interpréter automatiquement ou encore avoir des voitures qui conduisent toutes seules, les applications du Deep Learning sont nombreuses.

Reconvertissez-vous dans la Data et donnez un tournant à votre carrière !
Découvrir nos formations
Formations DataFormations Data

Deep Learning

Les réseaux de neurones artificiels

Ce genre de réseau est défini par des couches de neurones, celles-ci étant interconnectées.

Définissons les grandes étapes du Deep Learning :

– A chaque neurone constituant du réseau est affecté un coefficient.
– Chaque donnée d’entrée (input) va être multipliée par ce coefficient et va appliquer une certaine fonction à ce résultat.– Si la somme obtenue est négative, le neurone ne s’active pas, car la donnée n’est pas intéressante.

Si cette somme est positive, alors le neurone va envoyer l’information au neurone de la couche suivante (hidden layer), jusqu’à ce que la donnée ultime atteigne le dernier neurone. On aura alors un résultat final (output).

deep learning

La spécificité du Deep Learning

La particularité du Deep Learning réside surtout dans la capacité du réseau de neurones à apprendre de ces erreurs (même lorsque le résultat est négatif). Cette autonomisation dans le traitement des données brutes fournies à l’algorithme permet aux Data Scientists de se passer du nettoyage des données, étape très chronophage de tout projet Machine Learning.

Dans la pratique, les langages et les frameworks de Deep Learning sont des outils utilisés en programmation pour faciliter l’implémentation de l’architecture des réseaux de neurones : déterminer le nombre de couches d’un réseau et le nombre de neurones par couches.

Les applications du Deep Learning

La reconnaissance faciale

Les yeux, le nez, la bouche, tout autant de caractéristiques qu’un algorithme de Deep Learning va apprendre à détecter sur une photo. Il va s’agir en premier lieu de donner un certain nombre d’images à l’algorithme, puis à force d’entraînement, l’algorithme va être en mesure de détecter un visage sur une image.

La détection d’objets

Sur une image complexe où il y a plusieurs éléments, les algorithmes de détection d’objets vont être maintenant capables d’identifier et de localiser au pixel près un élément ou une personne. 800 millions d’images sont uploadées chaque jour sur Facebook : son algorithme Deep Learning est effectivement capable d’identifier telle ou telle personne sur une photo dès lors qu’elle est uploadée.

Le Natural Language Processing

Le Natural Language Processing est une autre application du Deep Learning. Son but étant d’extraire le sens des mots, voire des phrases pour faire de l’analyse de sentiments. L’algorithme va par exemple comprendre ce qui est dit dans un avis Google, ou va communiquer avec des personnes via des chatbots.

La lecture et l’analyse automatique de textes est aussi un des champs d’application du Deep Learning avec le Topic Modeling : tel texte aborde tel sujet.

Un exemple

Le Go est un jeu de plateau chinois caractérisé par sa profondeur stratégique. Développé par l’entreprise britannique Deep Mind rachetée par Google en 2014, l’algorithme Alpha Go a battu en 2017 le champion du monde. Ce jeu était pourtant un des derniers pour lesquels l’humain était meilleur que la machine. Non content d’avoir battu le champion du monde, les développeurs de cet algorithme l’ont encore amélioré : leur dernière version, Alpha 0, a finalement appris le Go en jouant contre des versions de lui-même !

Ainsi, même sans aucune stratégie humaine programmée au départ, cet algorithme est arrivé à performer en Deep Learning, donnant des perspectives toujours plus intéressantes pour les développeurs.
Soirée Portes Ouvertes Jedha BootcampSoirée Portes Ouvertes Jedha Bootcamp
Antoine Nuttinck
Antoine Nuttinck
Co-founder
Le spécialiste du Deep Learning ! Antoine est diplômé d’Assas et de Telecom ParisTech en Finance et Big Data. Après quelques expériences en banque, notamment à la Société Générale, il se fera une expérience chez Safran Identity & Security (ou Morpho) chez qui il développe ses compétences en Deep Learning. Après une expérience de presque 2 ans chez Partoo, licorne française du référencement internet, Antoine fonde sa propre structure, Signal Miners. Son coeur de métier : le traitement de signaux images, sons grâce au Deep Learning.

Articles recommandés